

Excel Graphing Assignment

1. Graphing Data Where Data Points Do Not Form a Perfect Line: The following table displays data on turbidity in Jackson Turbidity Units and biological oxygen demand in parts per million in different bodies of water. Highlight only the numerical data and follow steps 1-6 to make another Excel chart using Columns G and H:

Water Sample	Turbidity (JTU)	BOD (ΔO_2 ppm)
Rio Pond	40	5.2
King Pond	60	6.7
Brookside Pond	20	5.5
Sligo Creek	5	1.5
Northwest Creek	10	0.7
Anacostia Pond	30	3.9
Brookside Creek	10	3
Arboretum Pond	80	9.6
Koi Pond	60	7
Anacostia River	40	4.3

2. Generating a Gar Graph: The following table displays data on turbidity in creeks and ponds. Follow the instructions to express as a bar graph in Microsoft Excel:

Water Sample	Turbidity (JTU)
Brookside Creek	10
Sligo Creek	5
Northwest Creek	10
CREEK AVERAGE	
Rio Pond	40
King Pond	60
Brookside Pond	20
Anacostia Pond	30
Arboretum Pond	80
Koi Pond	60
POND AVERAGE	

Making the graph:

1. Open the Microsoft Excel file and enter both columns into Columns J and K.
2. Calculate the average values for creeks by typing “=average(K2:K4)” in Cell K5.
3. Calculate the average values for ponds by typing “=average(K6:K11)” in Cell K12.
4. Insert a row under “CREEK AVERAGE” so the resulting graph will provide more space between creeks and ponds.
5. Click “data” in the top of your Excel file to separately sort the individual creek and pond values (excluding averages) in order (lowest to highest turbidity values). You do this by highlighting the column sections of interest and clicking on “sort” based on the column section that represents turbidity (see video instructions).
6. Highlight both columns and click on “insert” and then choose “recommended charts” to create your bar graph.
7. Title your bar graph.